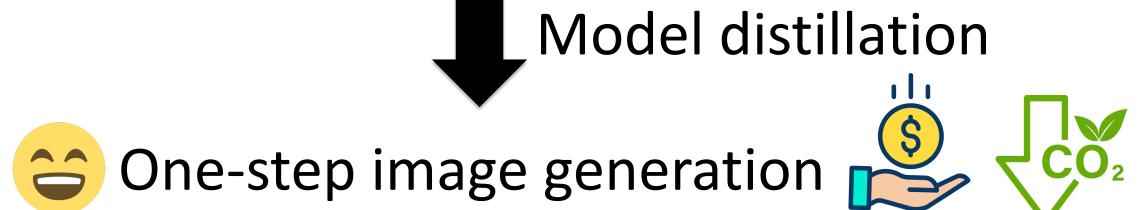


Distilling Diffusion Models into Conditional GANs

Minguk Kang^{1,2}, Richard Zhang², Connelly Barnes², Sylvain Paris², Suha Kwak¹, Jaesik Park³, Eli Shechtman², Jun-Yan Zhu⁴, Taesung Park² ¹Pohang University of Science and Technology, ²Adobe Research, ³Seoul National University, ⁴Carnegie Mellon University

The Denoising inference is time-consuming and expansive.



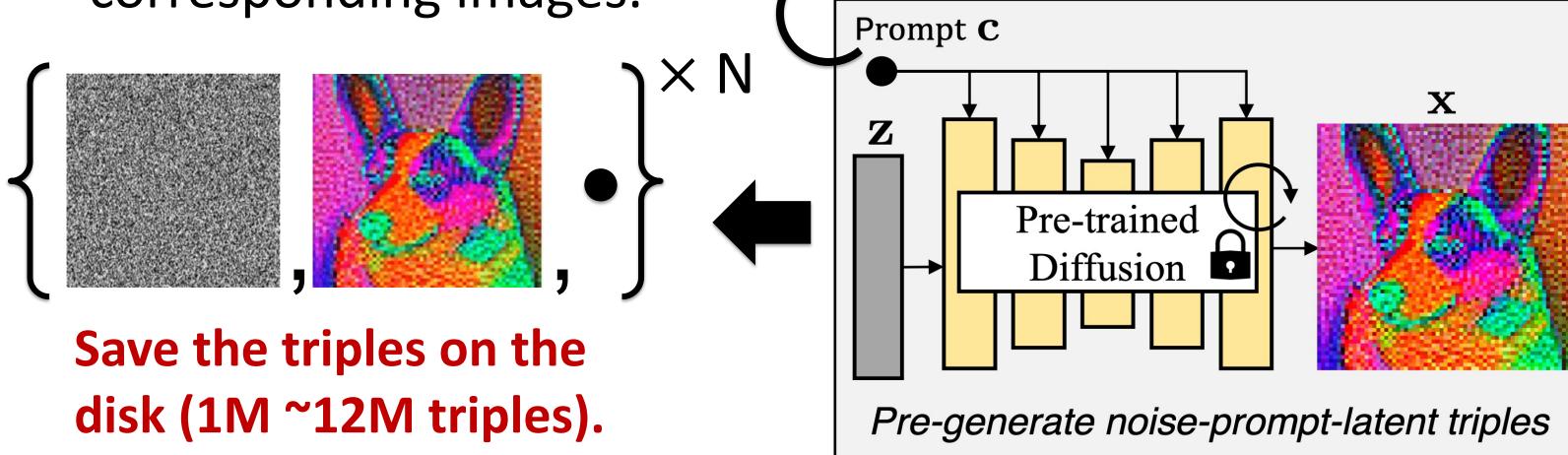
We propose one-step Diffusion2GAN generator!

a) Fast inference

- b) High-quality
- c) ODE preserving distillation
- d) Diverse image generation

Distillation procedure: "Training a conditional GAN"

Simulate randomly sampled Gaussian noises and get their corresponding images. Prompt **C**



Train a conditional GAN where the inputs are noise and prompts, and the targets are their ODE solutions.

